

Development of Smart Cities with AI Driven Public Services in India

Dr. A. Mallesham

Assistant Professor of Political Science

Nagarjuna Government College (A), Nalgonda, Telangana

DOI:10.37648/ijps.v21i03.024

¹Received: 30/11/2025; Accepted: 31/12/2025; Published: 07/01/2026

Abstract

Utilizing Artificial Intelligence (AI) to revolutionize urban living, India's Smart Cities Mission is implementing technologies such as Internet of Things (IoT), sensors, and data analytics to improve the efficiency of services in areas such as traffic, waste, energy, and public safety. This would ultimately lead to an improvement in governance and quality of life. Adaptive traffic management, predictive energy grids, optimized waste collection, and AI-powered public safety systems are some of the key applications. These applications all aim to address the challenges of rapid urbanization and foster inclusive growth through data-driven decisions. However, implementation faces challenges such as digital inequality, ethical concerns (Fairness, Accountability, Transparency, Ethics - FATE), and infrastructural gaps. In order to achieve successful and equitable outcomes, human-centric design and robust policy frameworks are required. Urban areas are progressively situated at the intersection of the globe's most urgent challenges: addressing extreme weather phenomena, overseeing migration, preserving affordability, and guaranteeing public safety. As the urban population increases, authorities are seeking technological solutions to address their most urgent challenges. Although numerous individuals restrict the concept of smart cities to those including flying cars and sophisticated robots, the truth is that any city or town that has integrated sensors into its infrastructure, even something as basic as streetlights, qualifies as a smart city. By equipping essential systems with connection and integrating sensors into current infrastructure, municipalities can enhance their comprehension of resource consumption, citizen behaviour, and service deficiencies. The emergence of AI, particularly generative AI, has created numerous opportunities for improving service accessibility and increasing efficiency. Nonetheless, these breakthroughs also introduce new risks.

1. Introduction

The Smart Cities Mission is a program that was established by the Government of India with the purpose of promoting the development of smart cities through the implementation of a number of different smart city solutions. According to Narendra Modi, the Prime Minister of India, this mission was carried out on June 25, 2015, with the intention of delivering solutions that produce results that have a significant impact. The creation of these solutions is done with the goal of boosting the quality of life while also focusing on sustainability. As the fundamental purpose of the Smart Cities Mission, the primary objective is to encourage the utilization of smart solutions in order to lead economic growth and sustainable practices, increase the security of citizens, and push holistic urban development in smart cities. Additionally, the Smart Cities Mission has been responsible for the implementation of a number of projects that are driven by artificial intelligence and technology, with the intention of enhancing the growth of smart cities.

At the moment, India is home to a total of one hundred cities that are smart cities. There are just a few cities that are selected to be classified as smart cities out of the many that are available. An assortment of elements, including

¹How to cite the article: Mallesham. A. (2026); Development of Smart Cities with AI Driven Public Services in India; *International Journal of Professional Studies*; Vol 21, Special Issue 3, 156-160; DOI: <http://doi.org/10.37648/ijps.v21i03.024>

urban development, population, statutory towns inside a city, economic infrastructure, and others, are taken into consideration in order to arrive at this classification. All of these top smart cities in India have a wide range of traits in common with one another. All of these artificial intelligence smart cities have a number of characteristics in common, including mixed land use, people-centric planning, urban infrastructure, and recreational places. There are ten smart cities in Maharashtra, making it the state with the largest number of smart cities on the list. Smart cities are scattered among all states and union territories. By utilizing cutting-edge technology and smart city solutions, a number of Internet of Things smart cities have come into existence.

Smart parking, smart garbage management, smart water management, and other services are made possible by recent advancements in IoT technologies, which are assisting cities in their transition towards smarter solutions. Smart CCTV surveillance cameras and Internet of Things sensors enable cities to grow more quickly and efficiently. The creation of smart city initiatives is aided by IoT-powered solutions, which in turn allow a smart city achieve its vision and make a significant effect. When it comes to carrying out the Smart Cities Mission, the Internet of Things (IoT) aids in optimizing public safety, improving mobility, and enabling improved decision-making.

2. Smart City Technology

Smart cities of the Internet of Things have everything that is smart, including smart buildings, smart roads, smart traffic management, and a great deal more.

- **Smart Waste Management**

Garbage trucks previously used for waste management would pick up trash from specific locations, drive along a predetermined route, and then deposit the contents into a landfill. Without an adequate monitoring system, this method is both time-consuming and inaccurate regarding container storage levels. Alternatively, a robust and effective waste management system can be established with the use of smart sensors, monitoring systems, tracking software, and useful applications. Additionally, a study found that garbage storage vans equipped with GPS devices might greatly increase efficiency by cutting down on travel time. Bin levels, collection routes, and schedules can be optimized with the use of Internet of Things (IoT) technology in IoT smart cities, such as monitoring systems and smart sensors. This boosts productivity and saves time.

- **Smart Traffic Management**

The issue of traffic is one of the most persistent and growing worries, since it typically results in haphazard conditions and poor management. Methods such as traffic rules, lights, smart city networks, and traffic police are examples of typical approaches. Among the technologies that are included in the Internet of Things for smart cities are those that are driven by artificial intelligence. These technologies not only offer sensors and software applications for the management of traffic, but they also provide a number of helpful tools that improve the response time for emergency situations, optimize routes, and minimize CO2 emissions, among other things.

- **Smart Roads**

IoT technology collects and analyses data to enhance road systems inside or between cities, facilitating efficient traffic management and the development of intelligent roads and routes. This entails constructing roads efficiently while minimizing trash and expenses. IoT technologies, including sensors, intelligent traffic signals, monitoring software, and artificial intelligence, mitigate congestion, improve safety, and decrease CO2 emissions.

- **Smart Lighting**

Lighting accounts for around 70 percent of total energy use. The implementation of Internet of Things (IoT) technologies that are combined with smart lighting results in cost savings, decreased energy consumption, and enhanced visibility and brightness. Individual requirements, the passage of time, and the available space can all be taken into consideration when designing smart lighting. Through the utilization of Internet of Things (IoT) integrated sensors, monitoring devices, and

particular applications, these systems are capable of being remotely changed and tailored. Additionally, the fact that smart lighting is simple to install and requires very no maintenance makes it an even more beneficial investment.

- **Smart Grids**

Energy efficiency and reduced consumption can be achieved by the widespread use of smart grids, which are electrical networks that integrate the Internet of Things. With the help of the Internet of Things (IoT), smart grids may reduce electrical bills, provide real-time monitoring, and optimize costs in IoT smart cities. These features make it possible to manage electrical networks more advanced.

3. Artificial Intelligence Driving Leading Smart Cities in India

Solutions that are powered by artificial intelligence are currently being deployed in virtually every industry, including educational institutions and infrastructure. Every single object is contributing to the development of smart cities at a substantially faster rate, from artificial intelligence-driven machinery to software with real-time impact and streamlined processes. As an illustration, artificial intelligence-driven closed-circuit television surveillance can assist in optimizing operations in a location. This can be accomplished by providing real-time monitoring and data-driven analytics, which in turn assists in the development of effective strategies.

Smart cities appear to have a bright future ahead of them as the Internet of Things (IoT) and AI-driven solutions continue to gain popularity. The integration of technology into urban living is the goal of these cities, which strive to improve the quality of life for their residents. Tran's line Technologies is dedicated to providing Internet of Things (IoT) Smart Cities solutions to governments and municipal bodies throughout the world in order to revolutionize their urban infrastructure. Trans line Technologies has established the technological foundation for significant artificial intelligence smart cities by implementing cutting-edge information and communication technology (ICT) systems, surveillance systems driven by artificial intelligence (AI), command and communication centres, intelligent traffic management, and public announcement systems. Using Internet of Things sensors in conjunction with artificial intelligence for smart city surveillance.

Concerns about privacy and security, as well as, more lately, re-prioritizations due to pandemics, have waxed and waned the smart cities movement during the last decade. Since major tech companies like GE's City IQ, Google Sidewalk Labs, and Microsoft CityNext spearheaded the platform-as-a-service and city-as-a-service movement, cities have retreated from procurement in favour of an emphasis on outcomes and the establishment of data governance structures to guarantee the projects' longevity. Numerous urban areas are concentrating on transportation-related use cases, such as the enhancement of multimodal transit networks, intelligent crossings, and public transportation optimization. In order to make sure their programs last, several cities have retreated from larger-scale Internet of Things installations and are instead focusing on expanding their connectivity infrastructure, such as fibre networks. In general, cities will prioritize issues like sustainability and safety improvements before trying to figure out what technologies may make that a reality. Prior to achieving scale, many deployments start with smaller pilot programs at the block level. The application of AI skills to new or existing information or streams is where AI becomes relevant in smart cities. Analytics powered by artificial intelligence (AI) can improve data quality, identify trends, merge data streams (data fusion), and gather data from the internet of things (IoT). The use cases that arise when looking at the A IoT equation differ among applications and cities. In order to help their clients with things like demand forecasting and planned resource use, among other measures, many IoT application providers incorporate AI analytics into the insights they give. Prior to acquiring and implementing AI apps and a comprehensive AI strategy in a city, it is crucial to address issues related to AI governance, data quality, and staff data literacy.

4. Benefits of AI-powered smart cities

IoT and other emerging technologies are being used by cities in order to improve safety, sustainability, quality of life, and the overall experience of residents. According to the findings of the Voice of the Enterprise: Internet of Things, the OT Perspective, Use Cases and Outcomes 2023 report published by 451 Research, fifty percent of

government respondents identified the primary motivation behind their smart city initiatives as the enhancement of public safety. This was followed by the enhancement of overall quality of life (for forty-four percent) and the enhancement of city services (for forty-two percent).

- For better safety and faster response times to incidents, cities are turning to technologies that rely on vision and audio. Cities can alleviate privacy concerns with surveillance-based or "safe city" programs by incorporating "privacy by design" principles into their vendor partnerships, creating data retention policies, and involving the community in camera-based deployments at an early and frequent stage. The city of Las Vegas has installed "smart parks" that monitor park usage even when they're closed to the public. Public safety teams receive automatic notifications generated by optical sensors and movement analytics.
- Within the context of managing resource consumption, migration, and climatic events, municipal officials are keeping sustainability at the forefront of their minds. Digital twins have been utilized by cities such as Lisbon in order to better prepare for urban flooding. This is accomplished by simulating which regions of the city may be most susceptible to flooding. If the city has a vulnerability map, it will be able to better plan for and reduce the effects of floods in the event that they appear.
- By enhancing their commutes, the quality of the air, and the services they receive from their governments, technology may improve residents' daily lives. Widely regarded as one of the world's smartest cities, London has prioritized enabling ubiquitous digital access, including fibre and 5G connectivity, and approaches smart city installations from a people-centric perspective. The city uses linked assets and sensors on top of this digital infrastructure to offer services like contextual maps that can layer numerous datasets, such as financial inclusion data by neighbourhood, and hyper local air quality data.
- Employee resources can be better utilized and citizen happiness can be increased by making government interactions better. Governments may make life easier for their inhabitants by providing digital portals for services like online permitting. The pilot program for permit navigator, which offers information and cost estimates for both commercial and residential permit projects, has been launched in Philadelphia.

5. Conclusion

When it comes to India's urban future, artificial intelligence is essential because it enables data-driven urban management. However, in order to bridge the trust gap and offer truly smart, sustainable, and egalitarian cities for all inhabitants, it is necessary to take a human-centric approach, implement inclusive policies, and pay attention to ethical considerations. Smart cities that use the Internet of Things appear to have bright and intelligent futures ahead of them. The following changes are in the horizon for the near future: Recent developments in artificial intelligence are reshaping the fire detection industry, which has long been a top priority. To help prevent accidents and other catastrophes, several solutions powered by AI have been developed and more are in the works to offer real-time monitoring and quick alarms when a fire is detected. As an example, consider Store pulse, an AI-powered application that aids in fire detection and instantly alerts both businesses and individuals, enabling prompt action to mitigate harm. As a means of bolstering security and avoiding catastrophes, such technology is anticipated to play a vital role in smart cities. Water quality can also be anticipated to be enhanced by the Internet of Things. We are developing sensors and monitoring apps that can track water quality and potentially improve it. IoT data collecting with AI analytics and insights could alter cities of all sizes and locations. These technologies could tackle some of the public sector's biggest environmental and safety challenges, but they also pose risks. Cities and vendors working on smart city projects should prioritize data transparency, community involvement, and digital equity. Smart cities need financial and public assistance to succeed. That depends on their performance and easing concerns. Doing so will require government and private sector governance and open discussion of AI-powered innovations' advantages and downsides.

References

Ahmed, N. (2023, November 7). How the personal data of 815 million Indians got breached/explained. *The Hindu*. <https://www.thehindu.com>

Albino, V., Berardi, U., & Dangelico, R. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. *Journal of Urban Technology*, 22(1), 3-21. <https://doi.org/10.1080/10630732.2014.942092>

Ali, O., Murray, P., Momin, M., Dwivedi, Y., & Malik, T. (2024). The effects of artificial intelligence applications in educational settings: Challenges and strategies. *Technological Forecasting and Social Change*, 199, Article 123076. <https://doi.org/10.1016/j.techfore.2023.123076>

Al Jazeera. (2021, January 22). Indian city plans facial recognition to spot 'women in distress'. *Al Jazeera*. <https://www.aljazeera.com>

Ashwini, B., Savithramma, R., & Sumathi, R. (2022). Artificial intelligence in smart city applications: An overview. In *2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS)* (pp. 986-993). IEEE. <https://doi.org/10.1109/ICICCS53718.2022.9788152>

Cugurullo, F. (2020). Urban artificial intelligence: From automation to autonomy in the smart city. *Frontiers in Sustainable Cities*, 2, Article 38. <https://doi.org/10.3389/frsc.2020.00038>